低酸素気トレーニングの研究報告

財团法人 日 本 体 育 協 会東京オリンピック選手強化対策本部 スポーツ科学研究委員会

低酸素気トレーニングの研究報告

スポーツ科学研究委員会低酸素気トレーニング研究班朝比奈一男，阿久津邦男，青木純一郎，猪飼 道夫，池上 啨夫，小川 新吉，勝田 茂，喜多 弘，杉本 良一，高 瀬 厳，塚越 克己，中西 光雄，中川 功哉，春山 国広，馬場先恵美子三宅 章介，横堀 栄
（アイウエオ順）

緒 言
 実験結果と考察

I 体重，疲労，脉拍
（5頁）
1．体重の変化
2．自覚的疲労症状
3．フリッカー値
4．安静時の脉拍数
II 呼吸機能
1．最大酸素掁取量
2．最大酸素負債量
III 血 液•
IV 一般体力，持欠力
1．一般体力への効果
2．全身持久力への効果

スポーツでの一般持久性を左右する因子は言う までもなく，呼吸循環血液のいわゆる酸素運搬系 の諸機能である。そこで持久性スポーツ種目のト レーニングにとって，低圧室とか，高地とかの低酸素環境がよい刺激条件となり，このような環境 へ馴化することが，ある程度そのまま一般持久性 の訓練となるのではなかろうかという考え方に立 って，体協選強本部スポ研の事業の一つとして一連の実験が行なわれた。勿論このような仮説によ る実験が従来も少ないとは言えないが，この試み のように系統立った計画に基づいたものはないで あろう。

1961年8月霧ヶ峰（1，600m，3週間）で陸上選手（中•長距離）トレーニングの検査にはじまり， 1963年 $1 \sim 2$ 月立川䑱空医学実験隊の低圧室での実験（高度 $4,000 \mathrm{~m}$ ，毎日 2 時間， 2 週間，自転車エルゴメーター1時間）が可成り大きな規模で行なわれ，さらに1963年7～8月乗鞍（鶴ヶ池 $2,700 \mathrm{~m}$ ， 2 週間，毎日走トレーニング）での実験 それに引きつづく平地での脱馴化防止の実験（低圧室，低酸素吸入による）が進められた。

これによって低圧ないし低酸素条件への呼吸循環血液系の馴化および脱馴化過程，さらに筋力そ の他諸機能の変化などがほぼ明らかにされたので ある。すなわち呼吸機能では最大酸素摂取量，最大酸素債，最大換気量などいづれも増大し，血液 では赤血球数，血色素が増加して造血の亢進を示 し，また循環系機能を中心とする一般持久力検査，すなわちトレッドミルでの持続走時間，ハー バード・ステップテストの点数もともに増加し， また運動負荷時の最大心拍数の低下など，確実に一般持久性の増強を示したのである。

これらの効果は，上記の条件においては低圧室 でのトレーニングによるよりも，高地でのトレー ニングによる方が著しく現われ，また脱馴化も後者の方が遅れて起ることも明らかにされた。さら に重要な収獲の一つは，脱馴化過程において，適当な低圧室または低酸素刺激を与えるとっ一見脱

馴化したと見られるものが，比較的容易に再馴化 の状態に戻ることである。たとえば赤血球や血色素にそのことが見られるが，いわばなお潜在性馴化の状態にあって，比較的軽い刺激にも応じるこ とが出来るのであろう。
実際の競技成績については，高地トレーニング後に可成り著しい進歩が見られ，第1回試走で19名中10名がトレーニング前の記録を更新し，第2回試走では18名中13名がトレーニング前より良い記録を出し，5ち12名が従来の自己記録を更新し ている。

このように，低圧，高地のトレーニングがスポ ーツでの一般持久性の増強に役立つことは確かめ られたわけであるが，低圧室の使用にしても，高地に出かけてのトレーニングにしても，交通，宿舎，食事などの他に季節その他時間的な制約が強 く，必ずしも希望通りのトレーニングを行なら事 が出来るわけではない。そこで，これに代る手軽 な方法で，同じような効果を期待出来るものが求 あられることになる。まず考えられることは当然低酸素気の呼吸とかっマスク装着による呼吸抵抗負荷などである。

今回の実験はこのような目的で平地での低酸素気呼吸の一般持久性トレーニング効果をしらべた ものであって，従来行なってきた一連のトレーニ ング実験の一環をなすねのである。

実験方法と実験の分担

低酸素気トレーニングは主として順天堂大学体育学部グラウンド及び検見川グラウンドでなさ れ，実験は日本体育協会スポーツ科学研究室及び順天堂大学体育学部運動生理学研究室において行 なわれた。

低酸素吸入はトレーニングの現場（屋外グラウ ンド）に和いて実施されたが，雨天の際は実験室内で行なわれた。

実験の期日とスケジュールは第 1 表に示す通り である。

第1表 低酸素気トレーニング実験のスケジュール

実験 条件	$\begin{aligned} & \text { 実験前 } \\ & \text { 総ス合 } \end{aligned}$	低 O_{2} 吸入トレーニングの実施													実験後総ス合
		O_{2}	02	02	0_{2}	$\begin{aligned} & 0_{2} \\ & (\mathrm{H}) \\ & \hline \end{aligned}$	$\begin{gathered} 0_{2} \\ \text { (血) } \\ \hline \end{gathered}$	$\begin{aligned} & 0_{2} \\ & (\mathrm{H}) \\ & \hline \end{aligned}$	（呼）	$\begin{gathered} 0_{2} \\ \text { (呼) } \end{gathered}$	$\begin{gathered} 0_{2} \\ \text { (血) } \\ \hline \end{gathered}$	（H）	02	02	
実験期日	$\left\|\begin{array}{c} 2 \text { 月1 } \\ 28 \cdot 29 日 \end{array}\right\|$	$\begin{array}{\|c\|} \hline 3 \text { 月/ } \\ 3 \end{array}$	4 日	7 日	9 日	11日	14日	17日	18日	19日	21日	23日	26日	27日	30•31日

但し $0_{2} \cdots \cdots \cdots \cdots$ 低酸素吸入
（呼）……呼吸機能測定
（H）……ハーハーバード・ステップテスト
（血）……血液検査

研究班の構成と測定項目の分担は，低圧トレー ニング及び高地トレーニング研究の場合と添ぼ同様のものであるが，トレーニングが順天堂大学体育学部において行なわれたため，選手の疲労及び栄養調査管理などの仕事を順天堂大学の研究室員 に依頼するなど，研究班の構成と仕事の分担に多少の変動がみられた。
1．低酸素吸入トレーニング期間中の被検者身体状況の管理。（分担……順天堂大：喜多，青木三宅）
2．呼吸機能の測定。（分担……慈大：杉本，阿久津，教育大スポーツ研：小川，勝田，春山，順天堂大：青木，三宅）
3．血液の測定（分担……東邦大：朝比奈，中川馬場先）
4．体力測定及び持久力の測定（分担……東大：猪飼，体協スポーツ研：中西，塚越，航空医学実験隊：横堀，池上，高瀬）
5．被检者：順天堂大学体育学部駅伝選手の中か ら，記録の面で能力の揃った 8 名の選手を選び， らち 4 名を実験群（低酸吸入を行なら）とし，他の4名を対照群（低酸吸入を行なわない）と した。被検者の氏名及び一般体力測定結果は第 5表に示す通りである。

低酸素吸入の実際：低酸素吸入トレーニングの頻度は，毎週3日，1日 2 時間の予定であったが，被検者の都合その他で，実際には第1表（低酸素吸入トレーニング実験のスケジュール）に示され るように，ほぼぼ週2日の割合となった。13～15\％

の酸素を含む空気をつめたダグラスバッグと採気 マスクの吸入口とを蛇管で接続し，まず 30 分間安静座位（時には臥位）で低酸素空気を吸入させる。 その後，空になったバッグと低酸素空気の入った バッグとを適宜に交換しながら，ジョッグを1時間行ない，続いて座位を30分間とる。すなわち合計2時間，連続的に低酸素を吸入させるわけであ る。

低酸素吸入トレーニングの初日及び第2日目 は，低酸素吸入にならすために，1時間殆んど座位で吸入させ，若干歩行及び柔軟体操を行なわせ るにとどめ，急激な低酸系負荷による被検者の恐怖，不安，障害を避けるようつとめた。実際に低酸素を吸入させた日程及びその時の酸素湄度（労研式大型ガス分析器で分析）時間は次に示す通り である。

$$
\begin{array}{rl}
3 \text { 月 } 3 \text { 日 } & 14.10 \% \times 1 \text { 時間 } \\
4 \text { 日 } & 14.10 \% \times 2 \text { 時間 } \\
7 \text { 日 } & 13.90 \% \\
& 13.80 \% \times 2 \text { 時間 } \\
9 \text { 日 } & 13.90 \% \\
& 13.80 \% \times 2 \text { 時間 } \\
11 \text { 日 } & 13.75 \% \times 2 \text { 時間 } \\
14 \text { 日 } & 13.70 \% \times 2 \text { 時間 } \\
17 \text { 日 } & 13.70 \% \times 2 \text { 時間 } \\
19 日 & 13.00 \% \times 2 \text { 時間 } \\
21 \text { 日 } & 13.00 \% \times 1 \text { 時間 } \\
26 \text { 日 } & 13.20 \%>\times 2 \text { 時間 } \\
& 13.10 \% ~ \\
27 \text { 日 } & 13.10 \% \times 1 \text { 時間 }
\end{array}
$$

実験結果と考察

I 体 重，疲 労，脉 拍

1．体重の変化

実験実施期間中毎朝 8 時に測定した各被験者の体重を実験群とコントロール群に分け，その平均値の変化過程を表わしたものが第1図である。こ れによると両群とも大体同じ傾向を示じ，中間期 を境にして前半は減少，後半は増加して最終日は ほぼ初期の状態にもどっている。これはよく合宿時にみられる傾向で，新しい環境に入ったためし ばらくその環境に適応出来ず，中間期頃からやっ と適応状態に入ったためと考克られる。いずれに しろ低酸素吸入が体重の変動と関係がない事は明 らかである。

2．自覚的疲労症状

日本産業衛生協会で定めた自覚的疲労症状調査表を用いて毎日 $8: 00,20: 00$ の 2 回調査を行な った。結果を第 2 図に示す。これたよるとコント ロール群よりも実験群の方が訴点の頻度が著明に多く明らかに実験群の方が疲労していたと思われ るのであるが，低酸素吸入前からすでに実験群の方が多くの疲労を訴えている。その値を基準にし て両群を比較すると，実験群の方が特に多くの疲労を訴えたとは思われない。以上の点より低酸素吸入による疲労蓄積傾向はないものと考六られ る。

3．フリッカー値

セクター式フリッカー計を用いて低酸素吸入日 の $8: 00$ ，19：00に測定した。実験群とコントロ一ル群の平均値から第3図を得た。これによると両群の間に顕著な差がなく，殆んど同じ傾向を示 している。フリッカー値を示標としてみた限りで は両群とも全く疲労の蓄積が認められない。した がって低酸素吸入による疲労蓄積傾向は全く考え られない。

4．安静時の脉拍数

毎朝起床直前に安静臥位時の脉拍数を測定し た。各被験者の測定値を実験群とコントロール群 に分け，その平均値の変化過程を表わしたものが第4図である。これそよるとコントロール群の方 は変動が大きく一定の傾向を示さないが，実験群 の方は多少の変動をしながらも，少しづつ減少を示している。しかしながらこの点だけで低酸素吸入が安静時の脉拍数を減少させると結論付けるこ とは出来ない。低酸素吸入は安静臥位時の脉拍数 に影響しないと考方られる。

第1図 体重の変化（下図の上段は縦軸が吸入した酸素濃度（\％），横の太さは吸入時間で細い方が1時間，太い方が 2 時間。下段は 1 日の走行距離。

第2図 自覚的疲労症状（A \cdots 身体的症状， $\mathrm{B} \cdots$ 精神的的症状，C…神経感覚的症状，$\square \cdots 8: 00$ の値，
－$\cdot 20$ ：00の値， $\mathrm{E} \cdot$ •実験群， $\mathrm{C} \cdot \cdots$ コントロール群）

第3図 フリッカー値の変化（上図の上の曲線は8： 00 の値に対する19：00の値の増減率の平均，下の曲線 は実験第1日の値を基準とした第2日以降の8：00の値の増減率の平均。E…実験群，C…コントロール群。下図は第1図と同じ）

なおトレーニング期間中の食餌は3月21日まで一日平均 $3,865 \mathrm{cal}$ ，蛋白質 119 g ，脂肪 115 g で

III 呼 吸 機 能

呼吸機能検査は，低酸素吸入トレーニング前後及び中間の 3 回に巨って行なった。測定項目は最大酸素摂取量及び最大酸素負債量である。測定方法は低圧トレーニング，高地トレーニング等の場合と全く同様であるので詳細は前報を参照された い。

1．最大酸素摂取量

低酸素トレーニングにお打る最大酸素摂取量の各個人別の成績一覧は第2表に示す通りである。 これによると実験群，対照群とも殆んど変化せず その平均値においても実験群は負荷前 3.5ℓ ，負荷後 3.4 l，対照群は負荷前 3.5 l ，負荷後 3.6 l と，両群とも殆んど意味ある変化を示さなかった。第5図はこの両群の最大酸素摂取量におがけ平均値の変化を図示したものである。

第4図 安静時の脈拍数（E…実験群，C…コントロ一ル群。下図は第1図に同じ）

あり， 3 月 22 日以降は $2,674 \mathrm{cal}, 83 g, 68 g$ であ った（但し主食のみ）。

酸素負債量についての成績を一括表示したもので ある。この測定は，緩走から全力疾走へ $650 \sim 700$ mの距離を走らせ，ほぼ all－out に近い状態に追 いこんだ直後から45分間に亘り椅座位で呼気を採気測定したものであるる。

これによると，実験群の平均は低酸素吸入トレ ーニング 2 週間後において 7.1 わから 7.4 と と僅 かに増加の傾向（ $+4.2 \%$ ）を示しているが，終了後においては $7.0 \ell(-1.4 \%)$ と負荷前よりも減少している。また，対照群にあっては7．2 1 ， 7.0 $\ell, 6.9 \ell$ とこれも僅かずつ減少の傾向にあった が，何れの群においてもその増減率は 5% 以内で あり，これより低酸素吸入トレーニングによる効果を見出すことはできない。第6図は両群の最大酸素負債量に打ける平均値の変化を図示したもの である。

2．最大酸素負債量

第3表は低酸素トレーニング前後における最大

第2表 最大酸素摂取量

$\begin{array}{\|c\|c\|} \text { 被検者 } \\ \text { 期間 } \\ \text { 目 } \\ \hline \end{array}$		最大酸素摂取量（ l ）			換 気 量（ ℓ / Min ）			疾走距離（m／Min）			採気まで 300 m 疾走時間（sec）		
		前	中	後	前	中	後	前	中	後	前	中	後
実	松 波	3.4	3.6	3.4	103.5	102.0	101.3	366	377	372	57.2	56.6	56.8
夷	大 塚	3.9	4.0	3.7	105.3	105.1	90.7	379	361	366	60.2	64.5	60.8
験	佐 藤	3.3	3.1	3.2	101.1	89.0	100.1	375	351	358	60.0	63.0	60.0
群	細 川※	3.4	－	－	106.1	－	－	380	－	－	57.0	－	
	平 均	3.5	3.6	3.4 103.6		98．7 97.4		373	363	365	59.1	61.3	59.2
対	草 菖	3.3	3.2	3.6	103.0	107.1	120.4	388	378	362	60.9	62.0	54.3
	則 末	3.5	3.7	3.7	85.5	88.8	88.0	393	377	376	62.2	57.5	59.9
照	鳥 居	3.6	3.8	3.5	95.7	109.3	94.4	372	342	369	53.7	54.8	$\begin{aligned} & 53.6 \\ & 54.5 \end{aligned}$
群	吉 田	3.4	3.8	3.7	101.4	111.9	107.0	350	373	385	60.0	55.6	
	平 均	3.5	3.6	3.6	96.4	104.3	102.5	376	368	373	59.2	57.5	55.6

※ 細川選手は故障のため平均値より除外
上記，期間における＂前＂は低酸素トレーニング前 2 月 28 ，29日＂中＂は低酸素トレーニング中 3 月 17 ， 18日＂後＂は低酸素トレーニング終了後3月30，31日を示す。

第3表 最大酸素負債量

			最大酸素負債量（ $~(~) ~$			疾 走 距 離（m）			疾	走 時	間
			前	中	後	前	中	後		中	後
実	松	波	7.8	8.1	7.1	666	677	672	$1^{\prime} 57{ }^{\prime \prime} 2$	$1^{\prime} 56^{\prime \prime} 6$	$1^{\prime} 56^{\prime \prime} 8$
	大	塚	6.3	7.9	6.6	679	661	666	$2^{\prime} 00^{\prime \prime} 2$	$2^{\prime} 04^{\prime \prime} 5$	$2^{\prime} 00^{\prime \prime} 8$
験	佐	藤	7.1	6.2	7.3	675	651	658	$2^{\prime} 00^{\prime \prime} 0$	$2^{\prime} 03^{\prime \prime} 0$	$2^{\prime} 00^{\prime \prime} 0$
群	細	$川 ※$	8.0	－	－	680	－	－	$1^{\prime} 57^{\prime \prime} 2$	－	－
	平	均	7.1	7.4	7.0	673	663	665	$1^{\prime} 59^{\prime \prime} 1$	$2^{\prime} 01^{\prime \prime} 4$	$1^{\prime} 59^{\prime \prime} 2$
対	草	荁	7.8	7.3	7.1		678	662	$2^{\prime} 009^{\prime \prime}$	$2^{\prime} 02^{\prime \prime} 0$	$1^{\prime} 54^{\prime \prime} 3$
	則	末	7.6	7.6	7.5	693	677	676	$2^{\prime} 02^{\prime \prime} 2$	$1^{\prime} 57^{\prime \prime} 5$	$1^{\prime} 59^{\prime \prime} 9$
照	鳥	居	6.8	7.2	6.4	672	642	669	$1^{\prime} 53^{\prime \prime} 7$	1＇54＂8	$1^{\prime} 53^{\prime \prime} 6$
群	吉	田	6.5	5.7	6.6	650	673	685	$2^{\prime} 00^{\prime \prime} 0$	1＇55＂6	$1^{\prime} 54^{\prime \prime} 5$
	平	均	7.2	7.0	6.9	676	668	673	1＇59＇2	$1^{\prime} 57{ }^{\prime \prime} 5$	$1^{\prime} 55^{\prime \prime} 6$

※ 細川選手は故障により平均値より除外，上記，期間におねる＂前＂＂中＂＂後＂は最大酸素摂取量（第1表）に同じ。

III 血

本実験では既述した条件の回数と継続時間で低酸素吸入トレーニングを行ない，それが造血機能 を元進する作用を示すか否かに焦点が打かれた。
結果を第4表に示し，その平均值にもとずく推移を第7図に示す。
血液測定はトレーニング期間の前後及び中間 （7日，18日）の計4回おこなわれた。
赤血球数は実験群においては対照値の 5.00 M （Mは100万）から18日経過して5．13Mとなり僅 かに0．13増加して尤進のきざしがあったが30日経過後では5．03Mとなり対照値に戻った。

対照群においてはほぼ一カ月間僅かに上昇下降 の変動が見られたが終回の赤血球数4．85Mは初回 の 4.78 M に比し殆んど変化がない。
一般的に持欠性トレーニングに際し赤血球数に多少の動揺があるのは明らかであるから，実験群 での幑増加は勿論低酸素吸大による造血作用の促進とは認め難い。

血色素量は対照群で初回98．0，終回99．0となり ほぼ一定である。実験群は図に明らかなように僅 かながら䡛増の傾向が見られる。初回95．3から終回 105.0 と約 $10 \% ~(サ ゙ ー リ ー) ~ の ~ 土 ~$ 増加がある。色素指数は対照群でほぼ一定であるが実験群は初回

液
0．95から終回1．04とやや増加している。
ヘマトクリット値は対照群初回，終回が 45.2 と なり全て同じ値を示したが実験群は初回 44.1 終回 42.5 と僅かに減少している。

容積指数は対照群が初回1．07，終回1．01と僅か に減少しているが実験群においては初回，終回と も0．98同一の値を示した。
赤血球平均直径は，対照群が初回，終回とも 7.5μ であるが，実験群は初回 7.5μ ，終回 7.4μ と やや縮少している。これは実験群のヘマトクリッ ト値の減少と平行している。
一般的に生体の低酸素環境に対する馴化は数日以内にはじまるとされているが，本実験のように極めて僅かの時間と回数の低酸素吸入の刺激によ る造血作用元進は認めることが出来ない。
へモグロビン量においては増加傾向がないとは いい切れないが，今までの一連の低酸素環境下の トレーニングの際認められたように赤血球数とパ ラレルな関係ではないので，これだけからは造血機能の元進とは認め難い。

血色素量やへマトクリット値の増加は酸素運搬能力を向上する因子であるが血色素量は実験群に おいて増加し，他方へマトクリット値は対照群に

第 4 表 第三次低 02 実験血液測定値

月 日	28，29／2			7／ 3		18／ 3		30，31／ 3	
氏 名	赤 血 球 R C（M）	$\left\lvert\, \begin{gathered} \text { 人モグロビ } \\ \text { ソザーリ } \\ \mathrm{Hb}(\%) \end{gathered}\right.$	$\begin{aligned} & \text { へマト } \\ & \text { クリット } \\ & \mathrm{Ht}(\%) \end{aligned}$	赤血 C 球		赤血球		赤血球	$\begin{gathered} \text { へモグロ } \\ \text { ビ } \\ \mathrm{Hb} \end{gathered}$
1．細川	4.98	107	46.1	5.31	115	5.76	117	5.05	120
2．佐 藤	4.90	101	43.7	4.62	99	4.66	103	4.76	100
3．大 塚	5.18	88	45.1	5.31	94	5.14	99	5.23	96
4．松 波	4.95	85	41.4	4.81	85	4.97	100	5． 08	102
平 均	5.00	95.3	44.1	5.01	98.3	5.13	105	5.03.	105
5．吉 田	5.29	108	50.0	5.53	104	5.01	112	5.31	109
6．則 末	4.42	93	46.0	－	－	4.54	90	4.90	97
7．鳥 居	4.86	104	42.1	4.78	95	4.59	99	4.83	97
8．草 营	4.33	87	42.8	4.11	95	4.51	94	4.34	91
平 均	4.73	98.0	45.2	4.81	98.0	4.66	99.0	4.85	99

おいて一定で実験群において減少していることも低酸素吸入の効果を否定する根拠となろう。即ち得られた変化は測定誤差か，または他の原因によ る変動と考六る余地が残るわけである。

結論としてこの実験条件での低酸素気トレーニ ングによっては血液面から見てその効果を期待す ることは出来ないと言うべきである。

IV 一般体力，特久力

1．一般体力への効果

持久力関係を除く一般体力測定の結果は第5表 のとおりである。
体重について……実験群ではトレーニング後， トレーニング前に比して全員，わずかずつ減少し ている（平均 1.7 kg 減）。これに対し対照群では，増加 2 名，減少 1 名，変化なし 1 名となっている （平均 0.9 kg 増）。実験群に和ける値の減少は，日々のハードトレーニングに低酸素吸入トレーニン グが追加されたため，彼等にとってオーバーワー クになったためではなかろらかと考えられる。
身長•座高•胸囲•下腿囲について……トレー ニング前後の値の間に殆えど変化がみられない。
皮脂厚について……実験群においては，被検者細川を除いて他は減少 2 名，変化なし 1 名となっ ている。（細川は脚の傷害により1週間以上トレ ーニングを中止したため，皮脂厚は 2.5 mm も増加 している。）これに対し対照群においては，増加 3名，変化なし 1 名となっておら平均 0.6 mm 増加し ている。従って，細川を除けば体重とほぼぼ等しい

傾向を示したことになる。
背筋力•握力•垂直跳について……筋力及びパ ワーを示すこれらの値は，低圧及び高地トレーニ ングの時と同様その変化に一定の傾向はみられて いない。

サイドステップについて…．．実験群，対照群共 に平均値においてわずかずつ増しているが，殆ん ど問題にならない程度である。
体前屈•肺活量について……特に一定した傾向 は示されていない。

結局今回の低酸素吸入トレーニングで，実験群 と対照群との間で差を生じたと思われる項目は，体重くらいのものでその他の項目では殆えど変化 を示さなかったことになる。その体重変化も，低酸素吸入トレーニングのためとは断定し難い程度 のものであり，むしろ栄養，疲労，オーバートレ ーニングといったトレーニング管理上の問題から来ているとも推定される。

2．全身持久カへの効果

ハーバードステップテストについて…．．．第8図

1964年2月28日～3月31日

	28，29／2	7／ 3	18／3	30，31／ 3	28，29／ 2	30，31／ 3	28，29／2	18／3	30，31／3
$\begin{gathered} \text { へマトク } \\ \text { リ } \\ \text { "t } \end{gathered}$		素 CI 指 数		数	容 積 V I指 数		赤血球平均直径		（ μ ）
47.7	1.07	1.08	1.02	1.19	1.03	1.05	7.5	7.3	7.3
42.1	1.03	1.07	1.11	1.05	0.99	0.98	7.4	7.4	7.4
43.9	0.85	0.89	0.96	0.92	0.97	0.93	7.5	7.4	7.2
40.4	0.86	0.88	1.01	1.00	0.93	0.97	7.5	7.6	7.7
43.5	0.95	0.98	1.02	1.04	0.98	0.98	7.5	7.4	7.4
46.5	1.02	0.94	1.12	1.03	1.05	0.97	7.6	7.5	7.4
43.7	1.05	0.99	0.99	0.99	1.16	0.99	7.5	7.6	7.5
44.4	1.07	0.99	1.08	1.00	0.96	1.02	7.6	7.5	7.6
41.6	1.00	1.16	1.04	1.05	1.10	1.07	7.4	7.4	7.4
45.2	1.04	1.02	1.06	1.02	1.07	1.01	7.5	7.5	7.5

第5表 一般体力測定結果一覧表

		実		験	群		対		照	群	
		松 波	細川	大 塚	佐 藤	平 均	則 末	草 菖	吉 田	鳥 居	平 均
体 重（kg）	前前	$\begin{aligned} & 54.0 \\ & 53.0 \end{aligned}$	$\begin{aligned} & 61.5 \\ & 60.7 \end{aligned}$	$\begin{aligned} & 55.5 \\ & 54.3 \end{aligned}$	$\begin{aligned} & 55.7 \\ & 54.0 \end{aligned}$	$\begin{aligned} & 56.7 \\ & 55.0 \end{aligned}$	$\begin{aligned} & 62.5 \\ & 62.5 \end{aligned}$	$\begin{aligned} & 56.7 \\ & 57.5 \end{aligned}$	$\begin{aligned} & 56.5 \\ & 54.8 \end{aligned}$	$\begin{aligned} & 50.5 \\ & 55.0 \end{aligned}$	$\begin{aligned} & 56.6 \\ & 57.5 \end{aligned}$
身 長（cm）	前	$\begin{aligned} & 164.8 \\ & 164.0 \end{aligned}$	$\begin{aligned} & 167.0 \\ & 166.9 \end{aligned}$	$\begin{aligned} & 164.3 \\ & 163.9 \end{aligned}$	$\begin{aligned} & 163.2 \\ & 163.0 \end{aligned}$	$\begin{aligned} & 164.8 \\ & 164.4 \end{aligned}$	$\begin{aligned} & 17 . .2 \\ & 171.1 \end{aligned}$	$\begin{aligned} & 168.4 \\ & 168.7 \end{aligned}$	$\begin{aligned} & 169.5 \\ & 169.1 \end{aligned}$	$\begin{aligned} & 163.3 \\ & 163.2 \end{aligned}$	$\begin{aligned} & 168.1 \\ & 168.0 \end{aligned}$
座 高（cm）	前	$\begin{aligned} & 86.2 \\ & 86.2 \end{aligned}$	$\begin{aligned} & 91.0 \\ & 90.1 \end{aligned}$	$\begin{aligned} & 88.0 \\ & 86.3 \end{aligned}$	$\begin{aligned} & 90.1 \\ & 90.0 \end{aligned}$	$\begin{aligned} & 88.8 \\ & 88 \end{aligned}$	$\begin{aligned} & 91.5 \\ & 90.5 \end{aligned}$	$\begin{aligned} & 91.5 \\ & 91.5 \end{aligned}$	$\begin{aligned} & 91.5 \\ & 92.1 \end{aligned}$	$\begin{aligned} & 90.9 \\ & 89.7 \end{aligned}$	$\begin{aligned} & 91.9 \\ & 90.9 \end{aligned}$
胸 囲（cm）	$\begin{aligned} & \text { 前 } \\ & \text { 後 } \end{aligned}$	$\begin{aligned} & 90.0 \\ & 88.5 \end{aligned}$	$\begin{aligned} & 90.0 \\ & 91.0 \end{aligned}$	$\begin{aligned} & 85.0 \\ & 85.0 \end{aligned}$	$\begin{aligned} & 86.0 \\ & 86.0 \end{aligned}$	$\begin{aligned} & 87.8 \\ & 87.6 \end{aligned}$	$\begin{aligned} & 88.0 \\ & 88.0 \end{aligned}$	$\begin{aligned} & 85.0 \\ & 85.0 \end{aligned}$	$\begin{array}{r} 86.0 \\ 86.0 \end{array}$	$\begin{aligned} & 86.5 \\ & 87.0 \end{aligned}$	$\begin{aligned} & 86.4 \\ & 86.5 \end{aligned}$
$\begin{gathered} \text { 下 腿 (囲 } \\ (\mathrm{cm}) \end{gathered}$	前 前	$\begin{aligned} & 33.5 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 34.5 \\ & 34.0 \end{aligned}$	$\begin{aligned} & 36.2 \\ & 36.5 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 35.4 \end{aligned}$	$\begin{aligned} & 34.8 \\ & 34.8 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 35.5 \end{aligned}$	$\begin{aligned} & 34.3 \\ & 34.0 \end{aligned}$	$\begin{aligned} & 34 \cdot 3 \\ & 33.8 \end{aligned}$	$\begin{aligned} & 34.5 \\ & 35.0 \end{aligned}$	$\begin{aligned} & 34.8 \\ & 34.6 \end{aligned}$
	前 後	$\begin{aligned} & 33.8 \\ & 33.5 \end{aligned}$	$\begin{aligned} & 34.2 \\ & 34.0 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 35.5 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 35.0 \end{aligned}$	$\begin{aligned} & 34.5 \\ & 34.5 \end{aligned}$	$\begin{aligned} & 35.5 \\ & 35.5 \end{aligned}$	$\begin{aligned} & 33.5 \\ & 33.5 \end{aligned}$	$\begin{aligned} & 34.2 \\ & 33.8 \end{aligned}$	$\begin{aligned} & 34.5 \\ & 35.0 \end{aligned}$	$\begin{aligned} & 34.4 \\ & 34.5 \end{aligned}$
皮脂厚（mm）	$\begin{aligned} & \text { 前 } \\ & \text { 後 } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.9 \end{aligned}$	3.5 4.5	5.0 5.5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	4.1 5.0	4.4 5.0
背筋力（kg）	$\begin{aligned} & \text { 前 } \\ & \text { 後 } \end{aligned}$	$\begin{aligned} & 118.0 \\ & 115.0 \end{aligned}$	$\begin{aligned} & 125.0 \\ & 132.0 \end{aligned}$	$\begin{aligned} & 130.0 \\ & 113.0 \end{aligned}$	$\begin{aligned} & 135.0 \\ & 123.0 \end{aligned}$	127.0 120.8	$\begin{aligned} & 159.0 \\ & 142.0 \end{aligned}$	110.0 96.0	$\begin{aligned} & 126.0 \\ & 125.6 \end{aligned}$	115.0 105.0	$\begin{aligned} & 127.5 \\ & 117.0 \end{aligned}$
握 ${ }_{\text {力 }}$（kg）	$\begin{aligned} & \text { 前 } \\ & \text { 後 } \end{aligned}$	$\begin{aligned} & 45.0 \\ & 47.0 \end{aligned}$	$\begin{aligned} & 52.0 \\ & 55.0 \end{aligned}$	$\begin{aligned} & 41.5 \\ & 47.0 \end{aligned}$	$\begin{aligned} & 46.5 \\ & 47.0 \end{aligned}$	$\begin{aligned} & 46.1 \\ & 49.0 \end{aligned}$	$\begin{aligned} & 53.5 \\ & 51.5 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 37.0 \end{aligned}$	$\begin{aligned} & 45.5 \\ & \Delta 8.0 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 45.0 \end{aligned}$	$\begin{aligned} & 44.8 \\ & 45.4 \end{aligned}$
	前 後	$\begin{aligned} & 42.5 \\ & 42.5 \end{aligned}$	$\begin{aligned} & 55.0 \\ & 54.0 \end{aligned}$	$\begin{aligned} & 43.5 \\ & 46.0 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 41.0 \end{aligned}$	$\begin{aligned} & 44.0 \\ & 45.9 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 47.0 \end{aligned}$	$\begin{aligned} & 32.5 \\ & 33.0 \end{aligned}$	$\begin{aligned} & 47.5 \\ & 45.0 \end{aligned}$	38.0	$\begin{aligned} & 43.3 \\ & 41.7 \end{aligned}$
垂直 跳（cm）	$\begin{aligned} & \text { 前 } \\ & \text { 後 } \end{aligned}$	$\begin{aligned} & 38.0 \\ & 44.0 \end{aligned}$	$\begin{aligned} & E 0.0 \\ & 48.0 \end{aligned}$	$\begin{aligned} & 39.0 \\ & 44.0 \end{aligned}$	$\begin{aligned} & 46.0 \\ & 48.0 \end{aligned}$	$\begin{aligned} & 43.3 \\ & 46.0 \end{aligned}$	$\begin{aligned} & 46.0 \\ & 52.5 \end{aligned}$	$\begin{aligned} & 47.0 \\ & 46.0 \end{aligned}$	$\begin{aligned} & \text { E0. } 0 \\ & 53.0 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 44.0 \end{aligned}$	$\begin{aligned} & 45.0 \\ & 48.9 \end{aligned}$
サイドステップ	前	$\begin{aligned} & 38.0 \\ & 39.0 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 36.0 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 37.0 \end{aligned}$	$\begin{aligned} & 41.0 \\ & 40.0 \end{aligned}$	$\begin{aligned} & 37.8 \\ & 38.3 \end{aligned}$	$\begin{aligned} & 39.0 \\ & 40.0 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 37.0 \end{aligned}$	$\begin{aligned} & 34.0 \\ & 35.0 \end{aligned}$	$\begin{aligned} & 34.0 \\ & 37.0 \end{aligned}$	36.0 37.3
体 前 屈（cm）	$\begin{aligned} & \text { 前 } \\ & \text { 後 } \end{aligned}$	$\begin{aligned} & 11.3 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 19.1 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 17.7 \\ & 16.1 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.0 \end{aligned}$	16.5	$\begin{aligned} & 14.0 \\ & 13.7 \end{aligned}$
肺 活 量（cc）	$\begin{aligned} & \text { 前 } \\ & \text { 後 } \end{aligned}$	$\begin{aligned} & 4950 \\ & 4650 \end{aligned}$	$\begin{aligned} & 4500 \\ & 4650 \end{aligned}$	$\begin{aligned} & 4700 \\ & 4600 \end{aligned}$	$\begin{aligned} & 4460 \\ & 4450 \end{aligned}$	$\begin{aligned} & 4653 \\ & 4588 \end{aligned}$	$\begin{aligned} & 4320 \\ & 4100 \end{aligned}$	$\begin{aligned} & 4620 \\ & 4550 \end{aligned}$	$\begin{aligned} & 4520 \\ & 4300 \end{aligned}$	$\begin{aligned} & 3900 \\ & 4000 \end{aligned}$	$\begin{aligned} & 4340 \\ & 4238 \end{aligned}$

に示されるように，実験群においてはトレーニン グ前に比してトレーニング後，平均得点は14点の減少となっている。これに対し対照群では逆に平均12点の増加となっている。このような両群の示 した変化傾向の相違は，低酸素吸入トレーニング のためというより，むしろ他の因子（例えば栄食疲労，脚の傷害，オーバートレーニングなど）に よるくのではないかと推定される。統計的には被検者数も少なく，変化傾向に例外もみられるため， トレーニング前後の平均値の間に有意差を認める ことは出来ない。

な和念のためにトレーニング前後における得点 の差を各被検者について求め，その値での両群の

平均値を算出し，差の有意性を検討したところ， やはり5 \％の有意水準をみたすことは出来なかっ た。

トレッドミル負荷試験について……負荷試験の具体的方法は低圧及び高地トレーニング研究の際行なったものと全く同じである。各被検者の示し た心拍数及び呼吸数変化は第 9 図～第16図に示さ れると和りである。考察の便をはかる意味で，ト レッドミル走行中の最高心拍数及び回復1分目の心拍数回復率を各被検者について求め作成したの が第 6 表である。

第6表
Tread－mill走行中の最高心拍数

（実 験 群）			（対 照 群		
	前	後		前	後
松波	182	185	則末	183	180
細川	184	195	草荁	180	180
大塚	185	185	鳥居	190	185
佐藤	193	186	吉田	196	190
平均	186	188	平均	187	184

回復1分目の回復率
$($ 回復率 $=$ 運動終了時心拍数—運動後心指数了時心拍数一安静時心指数 $\times 100)$

	（実 験 群）		（対 照 群）		
	前	後		前	後
松波	36.9	49.2	則末	61.8	66.6
細川	48.8	53.0	草荁	37.5	43.3
大塚	76.0	76.0	鳥居	42.3	46.4
佐藤	39.6	65.1	吉田	35.1	49.2
平均	50.3	60.8	平均	44.2	51.4

第 8 図 ハーバードステップテスト点の変化

第 9 図

持久力増大に伴ない走行中の最高心拍数は当然低下してくることが考えられるが，実験群ではト レーニング後，平均値にして 2 拍の増大を示し，対照群では平均 3 拍の減少を示している。両群の示したこのような変化傾向の相違は，ハーバード得点のそれと全く類似したものであり，同様な原因に基づくものと考方られる。しかし実際にはこ の差はわずかであり，統計的には有意な差と認め ることは出来ない。

トレッドミル走行終了後 1 分目の心拍数回復率 は持久力増大に伴ない上昇すると考克られている が，今回の結果は表にみられる如く両群いずれも上昇傾向を示しており，大差を認めることは出来 なかった。

結局全身持久力関係においては今回の低酸素吸入トレーニングの効果を殆えど認めることが出来 なかったとい良る。

結 論

以上のように，平地での低酸素気吸入によ口 て，低圧室や高地でのトレーニングによる馴化成立と同じ効果を期待して行なった低酸素気トレー ニングの実験は成功しなかった。
フリッカー値や安静時脉拍数のような所見で も一般体力，一般持久性のテスト成績でも，何ら の効果がなく，むしろ低酸素気吸入そのことが負荷となって疲労を蓄積させたかとさ觉見られるの である。
呼吸機能では，最大酸素摂取量，最大酸素負債 ともに変化がなく，血液面でも赤血球，血色素と

もにこのトレーニングによる効果と見らよるもの は見当らない。

しかしこの方法が全く無効であるとは断言出来 ないのであって。用いるガスの酸素濃度，吸入時間，回数など未だ検討する余地は広く残されてい るのである。

今までこの問題に関して行ない，報告した一連 の実験で得られたことを，極くかいつまんで言克 ば，スポーツでの一般持久性を向上させるのに，高地トレニングは極めて有効であると，低圧室ト レーニングは効果の点でやや劣ること，平地での

脱馴化防止はある程度可能であること，さらに平地での低酸素気トレーニーグは無効であることな どであろう。

これら一連の実験は計画において満たされぬ点 もあったけれども，全体として一応の収獲を得て成功したものと思ら。ことに高地トレーニングの

実際競技面への効果が確認されたことは，今後自信をもって実地適用が可能となった点で大きな成果であろう。勿論実験方法そのものに検討を要す る点も少くないであろらが。次回メキシコシティ でのオリンピックにそな完るという意味でも，さ らに一層強力な研究が望まれるのである。

